
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED SEPTEMBER, 2024 1

Constraining Gaussian Process Implicit Surfaces for
Robot Manipulation via Dataset Refinement

Abhinav Kumar1, Peter Mitrano1, Dmitry Berenson1

Abstract—Model-based control faces fundamental challenges in
partially-observable environments due to unmodeled obstacles.
We propose an online learning and optimization method to
identify and avoid unobserved obstacles online. Our method,
Constraint Obeying Gaussian Implicit Surfaces (COGIS), infers
contact data using a combination of visual input and state
tracking, informed by predictions from a nominal dynamics
model. We then fit a Gaussian process implicit surface (GPIS)
to these data and refine the dataset through a novel method
of enforcing constraints on the estimated surface. This allows
us to design a Model Predictive Control (MPC) method that
leverages the obstacle estimate to complete multiple manipulation
tasks. By modeling the environment instead of attempting to
directly adapt the dynamics, our method succeeds at both low-
dimensional peg-in-hole tasks and high-dimensional deformable
object manipulation tasks. Our method succeeds in 10/10 trials
vs 1/10 for a baseline on a real-world cable manipulation task
under partial observability of the environment.

Index Terms—Manipulation Planning; Motion and Path Plan-
ning

I. INTRODUCTION

SPECIAL care must be taken when using model-based
planning and control methods in partially observable envi-

ronments. This is particularly important where not all obstacles
are modeled by dynamics, to avoid collisions with unmodeled
or unobserved parts of the environment. Such collisions could
prevent task completion; for instance, the object being manipu-
lated might be blocked by the unmodeled environment object.
The challenge is heightened when manipulating deformable
objects like cables in the home or office. These objects can
interact with unmodeled parts of the environment in complex
ways due to high-dimensional, highly nonlinear dynamics.
This creates more possibilities for task failure.

Prior work has explored ways to model objects in the
environment based on data from partial visual observations
and/or contact [1]–[4]. However, such estimates can produce
inaccuracies that may lead to the task becoming infeasible (e.g.
blocking the path to the goal). In this work, we introduce Con-
straint Obeying Gaussian Implicit Surfaces (COGIS). COGIS
uses a Gaussian process implicit surface (GPIS) [5] to model
obstacles using contacts inferred during task execution. It also
uses a novel optimization approach to ensure the obstacle
surface satisfies provided constraints.

COGIS learns a GPIS using contacts estimated by tracking
the state of a manipulated object. It also incorporates predic-

Manuscript received: May 28 2024; Revised: Aug. 8 2024; Accepted:
Sept 12 2024. This paper was recommended for publication by Editor Júlia
Borràs Sol upon evaluation of the Associate Editor and Reviewers’ comments.
1 Robotics Department, University of Michigan, Ann Arbor, USA {abhin,
pmitrano, dmitryb}@umich.edu.This work was supported in part by the Office
of Naval Research Grant N00014-24-1-2036 and NSF grants IIS-2113401 and
IIS-2220876. Digital Object Identifier (DOI): see top of this page.

Fig. 1. Our method learns a continuous model of the obstacle geometry as an
implicit surface, voxelized here for visualization, while enforcing constraints
on the model. We model contacts as pairs of points interior and exterior to
the 0-level-set surface. a) A constraint violating surface where the cable state
estimate penetrates the surface due to noisy estimates of interior and exterior
points. b) The surface after estimated contacts have been refined.

tions from nominal dynamics and visual data. This enables
obstacle modeling without specialized tactile sensing, which
may not be available along the surface of a manipulated object.

The GPIS in COGIS uses a Gaussian Process (GP) to learn
a 0-level-set surface that we use to model obstacle geometry.
The underlying GP provides a method of estimating surfaces
from the estimated contacts along with an uncertainty estimate.
Its kernel function also provides a useful inductive bias that
encourages smooth surface predictions.

By optimizing the contact dataset, we enforce user-provided
constraints on the GPIS without assumptions on the form, con-
vexity, or differentiability of the constraints. We do this with
CMA-ES with Margin [6], a particle-based optimizer. These
constraints can incorporate domain knowledge or assumptions
related to the task being performed. Our key insight is that this
task-specific information can be used to constrain estimated
environment models, thereby improving task performance.
We use the estimated surface to construct costs for MPC.
Considering the estimated surface in the cost function, along
with considering visible obstacles in the dynamics, allows the
controller to navigate through the environment.

The contributions of this paper are:
• A method for estimating obstacle geometries online using

a fusion of visual input and contacts inferred through state
tracking and predictions from nominal dynamics

• A method for ensuring the estimated geometry satisfies
arbitrary task-informed constraints

We show that our method is able to identify obstacles and
enable task completion for low-dimensional peg-in-hole tasks
and high-dimensional deformable object manipulation tasks.
Baselines that do not adapt online or that attempt to reason
in the dynamics space succeed less frequently for the higher-
dimensional tasks. We also show that enforcing constraints on

ar
X

iv
:2

41
0.

00
15

7v
1

 [
cs

.R
O

]
 3

0
Se

p
20

24

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED SEPTEMBER, 2024

the learned surface improves task performance.

II. RELATED WORK
Online Adaptation An alternative to estimating environ-

ment geometry when using a pre-existing dynamics model is
to account for unanticipated contact by adapting the dynamics
model [7]–[11]. These works directly update a learned dy-
namics model with data from the online environment or learn
a residual dynamics model to capture the novel dynamics.
While these methods are useful for low-dimensional state-
action spaces, they require either multiple trials to collect
sufficient data when dynamics are high-dimensional or fit
simple linear models online. In contrast, we attempt to estimate
unseen obstacles, which exist in the 3D workspace and thus
do not require adapting high-dimensional dynamics models.
We also do not require large amounts of data and our results
show that our method can estimate novel objects well enough
to complete tasks in a single episode.

TAMPC [12] is a method that adapts MPC techniques to
novel environments through identifying and avoiding traps,
or local minima, of controllers, which sometimes arise from
unanticipated obstacles. TAMPC defines local minima in state-
action space. However, in manipulation problems, local min-
ima are often induced by geometric properties of the scene. By
directly considering the geometry of obstacles and manipulated
objects, we can learn a richer model that results in more
efficient task execution.

Contact Detection There is prior work that estimates
locations of contact points [13] or estimates properties of
manipulated objects using contact [14]. These methods use
estimates of joint torques and knowledge of robot geometries
to calculate a belief over contacts. These methods are not
generally applied to deformable objects as we lack good torque
estimates along an object like a cable. Lack of this data
motivates alternate methods for contact estimation.

Learned object/environment modeling Learned implicit
surfaces have previously been used to model environment
and object geometries. Two popular classes of models are
Gaussian process implicit surfaces (GPIS) [14]–[22] and neural
implicit surfaces (NIS) [23]–[26]. These works assume access
to rich perception signals, including visual data with dynamic
viewpoints or tactile sensors. We do not assume that our
viewpoint of the system can change over time nor do we
have access to tactile data when grasped objects make contact
with obstacles. We instead rely on a combination of limited
visual data with contacts estimated through state tracking and
predictions from nominal dynamics.

Constrained Implicit Surfaces Prior work has investigated
methods for imposing constraints on shape reconstructions.
One class of these methods can take the form of fitting
parameterized functions to provided point clouds [27]–[29].
These methods employ a fixed set of constraints and construct
equations that allow them to satisfy these constraints within a
convex optimization approach. Alternate methods in rendering
constrain implicit surfaces to respect haptic interaction [30]
and methods that learn 3D representations from 2D images
include regularization terms to constrain certain geometric
properties [31]. In contrast to these approaches, our method

imposes constraints on GPIS, handles arbitrary constraints, and
fits the surfaces without access to multi-view visual data.

III. PROBLEM STATEMENT
In this paper, we consider manipulation problems in which a

robot arm grasps an object and navigates it to a goal location.
We assume task execution begins with the object being grasped
and the grasp is maintained throughout execution.

We consider the problem of optimal control in a partially
observable environment. Let u ∈ U represent the robot’s action
and X ∈ X represent the state of a grasped object. We define
X = (x1, ...,xn), meaning X is represented as an ordered set
of n components where xi ∈ R3. This representation is useful
for high-dimensional systems like deformable objects, which
can be represented as a collection of particles or points of
interest. For example, a cable can be represented as a set of
ordered points in R3. It can be applied to other systems where
n = 1, for example a peg grasped by a robot in a peg-in-hole
task. Using this representation enables independent reasoning
about collisions between different components of manipulated
objects and the environment. We assume access to a function
dx(x1, x2) that provides a distance between state components.

Given an initial state X0 and a reachable goal set G, we
seek a trajectory τ using (MPC) that reaches G with a minimal
number of control steps. G specifies known goal locations for
a subset of components of X. We refer to the goal location
for a specific component i as Gi. This is useful when not all
components have desired goal configurations, for example in
a task where one end of a cable needs to be plugged in.

A trajectory τ has a horizon T , a sequence of controls τu =
{u0...uT−1}, and a sequence of states τX = {X0...XT }. A
nominal dynamics model f(X,u) predicts the next state given
the current state and some action. f is assumed to be provided
and will be applied to a novel environment with obstacles that
it may not be able to model due to partial observability. We
assume that error in f is caused by unobserved obstacles.

Our method can utilize, but does not assume access to,
a depth image Z and corresponding point cloud P of the
environment collected without occlusion from the robot or
manipulated object prior to task execution. Pre-generated depth
images and point clouds prevent visibility issues caused by
robot occlusion. We use d(X, P) to refer to the minimum
distance between each component of X and the points in P .

We assume the environment is static over the course of
task execution. We assume the robot and the grasped object
can make contact with the environment without ceasing task
execution or damaging itself or the environment. This can
be realized through compliant control or the ability to sense
torques at joints of the robot and recover to a safe configuration
when a threshold is crossed.

We assume the environment is partially observable and
therefore partially modeled at initialization. We seek to fit
a model Ê of the unknown environment geometry E while
obeying one or more provided constraints H = {h1, ..., hn}.
Ê will be fit from data collected during task execution.

This problem is challenging as estimating the model during
task execution means we have access to limited data and no
prior knowledge of the occluded region of the environment. In
addition, we do not assume tactile sensing is available.

KUMAR et al.: CONSTRAINING GPIS VIA DATASET REFINEMENT 3

Fig. 2. Block diagram showing the algorithm. Green blocks refer to objects generated by COGIS. The dynamics model, shown here as a MuJoCo simulation,
and visual input are created offline and used to plan a trajectory along with the current GPIS. After an action is executed, we infer contacts from the transition
(Xt, ut,Xt+1), which we use to update the GPIS. The generated data D are refined using CMAwM by selecting a subset D̄ that ensures the GPIS satisfies
provided constraints hall. We fit a surface in yellow that approximates the obstacle geometry occluded by the table while constraining the surface to avoid
penetration with the cable state estimate.

To address data quality issues, we incorporate explicit con-
straints into the estimation of Ê . We define hall = h1∧...∧h|H|
as a constraint satisfied if all constraints in H are satisfied.
These constraints can encode desired topological properties of
the model, for example requiring there to be a collision-free
path from the current state to G given Ê . Our goal is to inform
an MPC method using Ê . Rather than focusing on obtaining
an accurate geometry of the unseen object, we only seek an Ê
that is sufficient for completing the task.

IV. METHOD
Our method, shown in Fig. 2, can be split into two parts:

Generating contact data to be used to estimate Ê online (Secs.
A, B, C) and refining Ê to satisfy constraints (Sec. D). We also
include a description of our controller and how it uses Ê to
complete the task (Sec. E). We execute these steps in a loop,
shown in Alg. 1. We first define the GPIS model used to fit
Ê . A GPIS model learns a 0-level-set surface given exterior,
surface, and interior points and their corresponding semantic
labels:

GPIS : R3 → R;GPIS(x)


< 0 if x is interior

= 0 if x is on the surface

> 0 if x is exterior
(1)

We define a novel optimization problem for the dataset
refinement in the case of implicit surface models parameterized
by a set D̄ of points with corresponding semantic labels. D̄ is
a subset of all collected data D. As Ê is parameterized by D̄,
updating D̄ can be considered equivalent to updating Ê .

We seed the GPIS at initialization with the points in G with
corresponding labels of 1, reflecting our assumption that these
points are reachable and therefore exterior to the surface. The
GPIS parameters are updated using gradient descent every Tfit

iterations (see Table II).

A. Dynamics-Informed Contact Data Generation

We use predictions from nominal dynamics to estimate
contacts which we then use to generate interior and exterior
points of the GPIS. By identifying regions of state space where
the dynamics are inaccurate, we can generate candidate contact
estimates. While not all non-nominal dynamics are the result
of contact, we can generate data in this manner and then refine
contact estimates by enforcing constraints on the surface.

As we compute and execute control inputs using our con-
troller discussed in Section IV-E, we observe transitions of
the form (Xt,ut,Xt+1). We estimate contacts by comparing
the observed next state Xt+1 to the corresponding dynam-
ics prediction X̂t+1 for the transition. We generate labels
Yt+1, Ŷt+1 ∈ Rn for Xt+1 and X̂t+1 respectively, using
Equations (2) and (3).

Yi
t+1 = min

(
dx(X

i
t,X

i
t+1)

dx(Xi
t, X̂

i
t+1)

, 1

)
(2)

Ŷi
t+1 = 2Yi

t+1 − 1 (3)
As the values in Xt+1 correspond to the tracked positions of
the grasped object in the world, we can assume these points are
exterior to or in contact with the surface. Per (1), this means
they should have a corresponding label in Yt+1 ≥ 0. (2) will
compute a label between 0 and 1. We interpret lower values
as meaning a contact is more likely as motion is impeded.
An illustration of this can be seen in Fig. 3a. We generate 2n
potential data points for the GPIS corresponding to points in
Xt+1 and X̂t+1 per control step. We add a subset of these
points to the GPIS as explained in Section IV-B.

A transition corresponds to a contact when Ŷi
t+1 ≤ 0, which

occurs when Yi
t+1 ≤ .5 per (3). In this case, X̂i

t+1 would
correspond to an interior point. Adding interior and exterior
points with their corresponding labels to the GPIS allows it to
interpolate a 0-level-set, thereby fitting a surface.

B. Adding Generated Data to GPIS

While we calculate labels for the 2n points in Xt+1 and
X̂t+1 at each timestep, we do not necessarily add all 2n points
to the GPIS. We choose which data points to add based on the
progress being made by the controller and the semantics of the
generated labels.

1) Local Minima of Controller: Due to the finite horizon
of MPC, it is possible for the controller to enter a local
minimum of the cost function from which it cannot make
progress toward the goal. As we will discuss later, we use the
uncertainty of the GPIS as an exploration term in our MPC
cost function to address this. Adding data to the GPIS when the
controller enters a local minimum changes the cost landscape
by reducing the GPIS uncertainty at those points. The change
in the cost landscape can alleviate the local minimum, enabling
further progress. When a local minimum is detected, we add
all components in Xt+1 and their labels to the GPIS. Note that

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED SEPTEMBER, 2024

Algorithm 1: High-Level Control Loop

1 Given G, f, Ê ,MPC, α, β, η, C, f, dx, P, Z, rc
2 Xs = X0 // Saved state for local

minimum detection
3 while Not Reached Goal do
4 if Te steps since last component selection then
5 s← argmin Ê(Xt)

6 ut ← MPC(Xt, G, α, β, η, C, s, f, Ê , dX)
7 Xt+1 ← apply ut, step environment
8 X̂t+1 ← f(Xt,ut)

9 Generate Yt+1, Ŷt+1 using Equations (2), (3)
10 if Tm steps since last local minimum check then
11 local_minimum

← 1
Tm

1
n

∑n
i=1 dx(X

i
t+1,X

i
s) < dmin

12 Xs ← Xt+1

13 else
14 local_minimum ← False

15 pre_process_data(Xt+1,Yt+1,

16 X̂t+1, Ŷt+1, P, Z, rc,local_minimum)
17 Update D, D̄ with {(Xt+1,Yt+1), (X̂t+1, Ŷt+1)}
18 if ¬hall then
19 refine_contacts(D, D̄, TCMA, N, hall)

Algorithm 2: pre_process_data
1 Given

Xt+1,Yt+1, X̂t+1, Ŷt+1, P, Z, rc,local_minimum
2 V ← Image-frame depth of Xt+1 is less than

corresponding value in Z
3 C ← d(Xt+1, P) < rc
4 Yt+1[V ∧ ¬C] = 1
5 Yt+1[V ∧ C] = 0

6 I ← ¬(V ∧ ¬C) ∧ (Ŷt+1 < 0)
7 Xt+1 = Xt+1[(V ∧ C) ∨ I ∨ local_minimum]
8 Yt+1 = Yt+1[(V ∧ C) ∨ I ∨ local_minimum]
9 X̂t+1 = X̂t+1[I]

10 Ŷt+1 = Ŷt+1[I]

this cannot add any interior points, as we do not add points in
X̂t+1. To determine if we have entered a local minimum, we
periodically check the average distance per timestep traveled
by the manipulated object (line 8 in Alg. 1). If this distance is
below a threshold dmin, we consider the last state to be at a
local minimum. We consider these data points (Xt+1, Yt+1)
separately from data points added to the GPIS when contact is
inferred. We define masks M and M̄ over all points in D and
D̄ respectively, where M i = 1 if the ith data point corresponds
to a detected local minimum and 0 otherwise. This mask is
used in our contact refinement in Section IV-D.

2) Visual Pre-processing: Only using dynamics and state
estimates to generate labels can lead to false positive contacts
along the full length of an object like a cable even if only a
portion of the cable is in contact, as shown in Fig. 3b.

To address this, we use visual input to clean the labels, as
shown in Alg. 2. Specifically, we determine if components

Fig. 3. a) The green transition has a small discrepancy between the predicted
and actual next state, resulting in no contact detection. The red transition has a
higher discrepancy, resulting in contact detection. b) When the cable is pulled
upwards, the red transition would result in contact detection but does not due
to visual pre-processing. Points that are updated by vision are indicated by
the red line surrounded by green.

are visible and, if so, whether they are in contact with the
environment. We determine visibility by projecting component
coordinates into image coordinates. Given the intrinsic and
extrinsic camera parameters, we can recover pixel coordinates
(u, v) for each component as well as a depth z corresponding
to the current state. Letting Z(u, v) be the depth value stored
in the depth image Z at (u, v), a state component is visible if
z < Z(u, v). Visible components are given a label of 1.

Components of Xt+1 that are within a distance rc of a point
in P are considered as visibly in-contact with a label of 0. rc
is a parameter whose value is informed by the resolution of
the point cloud and the geometry of the grasped object.

We add data to D and D̄ if a combination of critera are met:
We add points in X̂t+1 and their labels if they are non-visible
interior points (lines, 6, 9 in Alg. 2) and we add points in Xt+1

and their labels if they are visibly in-contact or correspond to
interior points in X̂t+1 (line 7 in Alg. 2). We do not add the
dynamics predictions of visible components to D and D̄ to
avoid incorrectly adding interior points to the data sets.

C. Visual Post-processing
Even with pre-processed data, the specific values of kernel

parameters and the nature of Gaussian process interpolation
can lead to predictions of occupancy in known free space.
Along with using visual input to pre-process the labels in D
and D̄, we also use the visual data to post-process the GPIS
output. When making a prediction, we check if the input point
is visibly in free space. If so, we override the mean of the
prediction and treat the point as being in free space.

As opposed to explicitly adding known free space points to
the GPIS, this filtering step allows us to fit a useful surface
while having an uncertainty landscape that only depends on the
states visited during task execution. As the Gaussian Process
produces smooth uncertainty quantification, data correspond-
ing to visible points can incorrectly reduce the uncertainty
in non-visible areas. This could be addressed through an
additional input dimension corresponding to the visibility of
the point, but we choose to implement the post-processing over
the kernel engineering that would be required to include the
semantic information as GPIS input.

D. Contact Refinement
A key contribution of COGIS is its ability to refine the

estimate of the object using task-specific constraints. Due to

KUMAR et al.: CONSTRAINING GPIS VIA DATASET REFINEMENT 5

Algorithm 3: refine_contacts
1 Given D, D̄, ϕ, TCMA, N , hall
2 D = D[M = 0]
3 D̄ = D̄[M̄ = 0]
4 M = M [M = 0]
5 M̄ = M̄ [M̄ = 0]

6 ω∗ ← 1|D̄|

7 ϕ∗ = −1
8 CMA← CMAwM(N (.5, .25))
9 Calculate c using (5)

10 for TCMA steps do
11 Ω← Sample(CMA, N)
12 Evaluate samples using ϕ
13 for ωi ∈ Ω do
14 if c⊤ωi > ϕ∗ and hall(D̄, ωi) then
15 ω∗ = ωi

16 ϕ∗ = c⊤ωi

17 Update CMA with Ω

18 Remove points from D̄ where ω∗ = 0

noise in state estimation or dynamics as well as heuristics used
in computing interior points, it is possible to fit models of
the environment that do not satisfy the desired constraints.
For example, a surface may be fit that results in significant
penetration of the state estimate into the surface, causing issues
with planning methods. In another case, there may be no paths
to G that avoid collision with Ê . As Ê is parameterized by D̄,
we can improve constraint satisfaction by removing data from
D̄ that leads to constraint violation. We implement an integer
optimization problem in (4) to refine Ê .

ω∗ = argmax
ω

c⊤ω

s.t. hall(D̄, ω, . . .)

ω ∈ {0, 1}|D̄|

(4)

c = σ(
∑
i∈D

K(D̄,Di)) (5)

ω ∈ {0, 1}|D̄| is a binary vector with an entry corresponding to
each data point in D̄, c ∈ R|D̄| is a weight for the optimization,
described below, K is the kernel function of the GPIS, and σ is
the softmax function. A value of 0 corresponds to the data point
being removed from D̄. The “. . . ” refer to auxiliary arguments
that may be needed for computing various constraints. This
approach minimizes deviation from the current estimate by
removing a minimal number of data points from D̄ while
ensuring constraint satisfaction.

While we seek to maximize the number of data points kept
in D̄, we bias the optimization toward keeping data points
that have a higher density in D. This reflects our assumption
that points that are repeatedly encountered are less likely to
be spurious. By keeping a “memory” of all collected non-
local minima data points, even ones that have been previously
removed from D̄, we can recover from incorrectly removing
data points from D̄ due to the distribution of D̄ at the time
of the previous optimization. Through the use of this memory,
we are able to reduce the search space of our optimization by

searching over only the data points in D̄ while still informing
the optimization with all collected data.
c is defined in (5) and biases the optimization toward

keeping points in D̄ that are more similar to points in D, with
similarity calculated using K. We use σ to ensure a consistent
scale for c regardless of the size of D or D̄.

We solve this optimization problem using CMA-ES with
Margin (CMAwM) [6], as shown in Alg. 3. CMAwM is a
particle-based optimization method that handles constraints
by including them in its objective function. We construct
an objective function ϕ in (6) minimized by CMAwM that
includes the objective function from (4) as the first term and
a constraint violation penalty as the second term:]

ϕ(D̄, ω, . . .) = −c⊤ω + 10(1− hall(D̄, ω, . . .)) (6)
As CMAwM does not require gradients to optimize ϕ, we

can use constraints that may not be convex or differentiable
with respect to ω.

After the optimization has run, states that may have been
local minima given the previous Ê may no longer be local
minima. Keeping the previously detected local minima in D̄
may prevent the controller from exploring states needed to
collect contact data as they would have low variance under
the GPIS. To address this, we remove points from D and D̄
corresponding to local minima using the masks M and M̄
when the optimization is triggered (lines 2-5, Alg. 3).

E. Controller

Our MPC cost function is J(τ) = Jg(τ) + αJu(τ) +
CJc(τ)+βJe(τ) where the different terms are: a goal directed
cost Jg , an action regularization cost Ju, a collision cost Jc,
and an exploration cost Je. α, β, C ∈ R are coefficients used
to weigh the different costs.

1) Goal Cost: The goal cost in (7) drives the controller
toward the goal state. dx(Gi,Xi

t) = 0 if there is no goal
defined for component i. If only this distance is used in the
cost, it is possible for other cost terms to overwhelm the goal
cost near the goal, preventing the trajectory from converging
successfully. We add a cost term that helps the controller
converge to the goal by creating a deeper basin in the cost
function near the goal that the controller can exploit. We use
an indicator 1gt , which is 1 when the goal distance is less
than rg for all state components with defined goals. rg is the
distance from the goal that would indicate task success. We
weight this term by a parameter η ∈ R.

Jg(τ) =

T∑
t=1

(
−η · 1gt +

∑
i∈G

dx(Gi,Xi
t)

)
(7)

2) Action Regularization Cost: Ju(τ) =
T−1∑
t=0
||ut||2 penal-

izes large actions to encourage smooth motion.
3) Collision Cost: We define a collision cost in (8) that

penalizes transitions that would cause collision with Ê . This
is done by calculating the posterior prediction of the GPIS for
the states along a rollout.

Jc(τ) =

T∑
t=1

n∑
i=1

1Ê(xi
t)≤0 (8)

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED SEPTEMBER, 2024

Fig. 4. The peg-in-hole environments. The end-effector is grasping a peg,
which the robot navigates to the hole. Environments and figure are from [12].

4) Exploration Cost: As in prior work, we use the uncer-
tainty to gain information about the obstacles by exploring new
regions of state space. We also find this form of exploration
useful to help escape from what would otherwise be local min-

ima of the controller. The exploration cost Je(τ) = −
T∑

t=1
σs
t
2

uses the variance of the GPIS at a state X, where σt
2 ∈ Rn is

the variance of the normal distribution predicted by the GPIS
for the n components.

V. RESULTS

We evaluate our method on peg-in-hole and deformable
object manipulation tasks, demonstrating the method’s utility
for manipulating objects with varying state dimensions and
task requirements. We use model predictive path integral
control (MPPI) [32] for MPC. We use a Matern kernel for
the GPIS with ν = 1.5. Other parameter values are provided
in Table II. We use [33] to implement the Gaussian process.

A. Constraint Optimization Implementation

For the following experiments, we provide definitions of
constraints we enforce on the surface. These constraints are
violated in the presence of spurious interior points. The
presence of exterior points does not increase the likelihood
that these constraints are violated. Therefore, in our CMAwM
optimization, we only optimize ω for the interior points in D̄,
and pre-fix the values in ω corresponding to exterior points
to 1. This is consistent with maximizing (4) and allows us to
reduce the size of our search space at runtime.

B. Peg-in-Hole

We use the peg-in-hole tasks defined in [12] and shown in
Fig. 4. In these tasks, an end-effector simulated in PyBullet
[34] navigates a peg to a goal hole. We assume the goal
location is known but assume no prior knowledge of obstacles,
necessitating adaptation. Due to heuristic placement of interior
points, the narrow opening in the Peg-U task can induce
surfaces that block the path to the goal, as shown in Fig. 5. A
success is defined as placing the peg within 2cm of the hole
within 750 control steps.

The state is (x, y,Rx, Ry), where (x, y) represents the R2

end-effector position and (Rx, Ry) are reaction forces. The
control signal is (∆x,∆y). We execute 1 step of a planned
trajectory, replanning at each timestep. We only consider the
R2 position to fit the surface. For these tasks, n = 1.

1) Constraint: For these tasks, we enforce a constraint
using connected components to guarantee the existence of a
collision-free path between the goal and the tracked point at
the center of the peg. We calculate connected components of

Fig. 5. Predicted obstacles for the Peg-U task. a) A constraint violation; the
goal is encompassed by the obstacle, violating the constraint. b) Optimized
surface; CMAwM removes the red interior point above the goal, satisfying the
constraint.

a binary image of the scene based on the GPIS predicted
semantics using [35]. If the current state and the goal state
are in different components, the constraint is violated.

2) Analysis: We compare our method to TAMPC and use
their pre-trained dynamics model for f , which is learned
without the presence of obstacles. We do not use visual input
for our method to provide a comparison to TAMPC. We also
evaluate two ablations: one with refine_contacts ablated
and one with no local minima detection.

We use the MPPI parameters in [12] and tune the parameters
for our method with Bayesian optimization.

As shown in Table I, we achieve similar to higher success
rates than TAMPC and the ablations on these tasks over 30
trials. We believe this is due to the learned surface providing a
dense geometric model of the environment that is informed by
topological constraints, allowing for collision checking while
guaranteeing task feasibility. We also show the utility of the
contact refinement optimization for the Peg-U task through a
higher success rate when compared to the ablation.

We show comparable results between the ablation and full
method for the Peg-T task. This is expected as the geometry for
the Peg-T and Peg-I tasks is less likely to induce violations of
the connected components constraint. There is some increase
in success rate for the Peg-I task, caused by the constraint
sometimes being violated when there is penetration of the peg
state into the surface estimate. As we remove data points cor-
responding to local minima from D̄ before running CMAwM,
this can result in a “reset” of the exploration cost, making it
more likely for the controller to succeed. The learned surface
also approximates the true obstacle geometry, as seen in Fig. 5.

C. Simulated Cable Manipulation

In this task, a two-armed, 16-dof robot removes a cable from
under a hook. The hook has a barrier that occludes part of the
obstacle, as shown in Fig. 6. The high degree of occlusion
motivates estimating the obstacle geometry and the contact
refinement. A success is placing the center of the cable in a
4cm radius sphere over the hook within 200 steps.

We use a MuJoCo [36] simulation to model f . We include
the observed environment in our dynamics by constructing a
mesh from P and using it in MuJoCo. We represent the cable
as 25 articulated links and track the R3 position for each link.
These positions comprise the state components. The control is
[∆pl,∆pr] ∈ R6, where ∆pl is the change in the left gripper’s
position and ∆pr is the change in the right gripper’s position.

We use CDCPD2 [37] in combination with the state from
the simulation of the partial environment to estimate the cable

KUMAR et al.: CONSTRAINING GPIS VIA DATASET REFINEMENT 7

Fig. 6. Deformable object tasks. a) Simulated cable manipulation task. The
robot navigates the center of the cable to the green goal region. The camera is
located above and behind the robot, causing the obstacle geometry to induce
a high degree of occlusion. b) Real world cable manipulation task. The robot
starts grasping the cable under the clamp and navigates it to the power strip.

state. CDCPD2 includes regularization terms that promote
smoothness of the estimate and prevent large deviations in the
estimate between timesteps, leading to reasonable estimates for
occluded portions of the cable.

1) Constraint: We constrain the surface to prevent penetra-
tion of the cable state estimate by calculating GPIS predictions
for each state component. We find it useful to be conservative
by calculating a lower bound on the GPIS prediction using
the uncertainty. Specifically, if µ and σ are the mean and
variance of the Gaussian predicted by the GPIS, then we check
if µ + Φ−1(ζ)σ ≤ 0, where Φ is the CDF of the standard
normal distribution and ζ ∈ (0, 1). ζ = .4 for this task.

2) Analysis: We compare our method to TAMPC and a
baseline which directly uses the partial visual information
without any online adaptation. We also run ablations, individ-
ually ablating the local minima data addition, the visual pre-
processing, visual post-processing, and the contact refinement
step. For the TAMPC state distance function, we consider the
R3 position of the center of the cable to provide a more useful
distance than a distance in the full R75 state, which we found
to be ineffective. We do not train a residual dynamics model
online for TAMPC as the online data is insufficient for training
a useful model for the high-dimensional state-action space.

Our results in Table I show that our method achieves higher
success rates than the baselines and contact refinement ablation
over 30 trials. We also show that the contact refinement
provides the largest increase in performance of the various
design choices. The ablated method can fail if spurious interior
points close off the gap between the hook and the table. Our
contact refinement algorithm can remove the spurious data
points, improving task success. We believe TAMPC’s trap
representation provides a sparser signal to the controller and
struggles to cover the space of possible local minima induced
by the hook. Our method reasons about contacts along the
length of the cable independently, enabling us to learn a richer
model of the environment that improves task performance. The
non-adaptive baseline cannot reason about the occluded part of
the obstacle, leading it to collide repeatedly with the obstacle.

D. Real Cable Manipulation

In this task, the robot navigates an extension cord around
an occluded obstacle to a goal power strip. Part of a clamp
underneath the table is occluded, as shown in Fig. 6, requiring
online adaptation to successfully complete the task. The higher
amount of state estimation noise in the real world along with

Environment Method Success Control Steps
(Given Success)

Peg-U

COGIS (Ours) 26/30 296.3± 84.4

COGIS-No local minima 12/30 129.17± 33.4
COGIS-No refinement 11/30 135.7± 62.9

TAMPC 27/30 248.3± 57.4

Peg-I

COGIS (Ours) 27/30 328.7± 56.9

COGIS-No local minima 3/30 499.7± 248.9
COGIS-No refinement 25/30 316.2± 57.3

TAMPC 23/30 274.4± 45.6

Peg-T

COGIS (Ours) 30/30 123.3± 35.1
COGIS-No local minima 25/30 234.2± 61.7

COGIS-No refinement 30/30 107.7± 26.9

TAMPC 25/30 160.3± 25.0

Sim. Cable

COGIS (Ours) 23/30 114.4± 21.8

COGIS-No local minima 24/30 122.8± 13.8

COGIS-No vis. pre-process 22/30 135.7 ±15.1
COGIS-No vis. post-process 21/30 121.4± 13.6

COGIS-No refinement 17/30 111.5± 22.7
TAMPC 1/30 161± 0

Non-adaptive 1/30 174± 0

Real Cable
COGIS (Ours) 10/10 74.1± 5.8

COGIS-No refinement 9/10 88.4± 11.4
TAMPC 1/10 132± 0

TABLE I
SUCCESS RATES, 95% CONFIDENCE INTERVALS FOR CONTROL STEPS.

CONTROL STEP STATISTICS ARE CALCULATED FOR SUCCESSFUL TRIALS.

the gap between the MuJoCo dynamics used in MPPI and
the true cable dynamics can lead to artifacts in the estimated
surface which motivate contact refinement.

We again use a MuJoCo model of the partially observed
environment for f with the same cable state. For this task,
one gripper is used as one end of the cable is fixed to the
wall. We use the same constraint as used in the simulated
cable experiment, with ζ = .45.

1) Analysis: We find that both the ablation and full method
are able to consistently solve the task over 10 trials, but we
observe qualitative differences in the estimated surfaces and
quantitative differences in the episode lengths. As can be
seen in Fig. 1, without the additional optimization, error in
state estimation or dynamics can create artifacts in the surface
estimate. These artifacts can lead to longer trajectories, as seen
by the greater number of actions taken by the ablation.

Our method outperforms TAMPC, which struggles due to
the high dimensional nature of the problem and the potentially
long recovery horizon.

VI. DISCUSSION AND CONCLUSION

The main limitation of our method is its assumption that
dynamics error is caused by contact. This can lead to placing
surfaces in regions where there is no unobserved obstacle due
to improper modeling of the physical system. This improper
modeling could be due to incorrect estimations of system prop-
erties, for example the stiffness or other physical parameters of
a cable, or due to the use of learned dynamics or low-fidelity
simulators. Our contact refinement step is capable of mitigating
this through imposing constraints that can remove artifacts
generated due to non-contact based dynamics error. However,
it is possible that large deviations from nominal dynamics, for
example due to a large gap between the simulator and reality,
could generate more spurious obstacles than the refinement is
able to compensate for.

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED SEPTEMBER, 2024

As the constraints are task-informed, it is possible that a
surface fit for one task may result in poor performance if
used as is in another task. However, COGIS should be able
to generate surfaces online given meaningful constraints for a
new task. While we cannot guarantee that we will only detect
true contacts with the environment, we show in our results in
Table I that the inclusion of the contact refinement leads to
higher task success rates.

We presented Constraint Obeying Gaussian Implicit Sur-
faces (COGIS), a method for modeling a priori unknown ob-
stacles while ensuring these models satisfy desired constraints.
Through this we enable rapid adaptation of manipulation to
partially observable environments. We achieve higher success
rates than baselines and ablations across multiple tasks, includ-
ing high-dimensional deformable object manipulation tasks.
Our method leverages a novel fusion of visual and inferred
contact information to model obstacles using a Gaussian
process implicit surface along with a novel contact refinement
step, enabling data-efficient obstacle modeling for use in MPC.

VII. ACKNOWLEDGMENTS

The authors would like to thank Dylan Colli for his help
with CDCPD2.

REFERENCES

[1] B. Saund and D. Berenson, “Clasp: Constrained latent shape projection
for refining object shape from robot contact,” in CoRL, 2022.

[2] E. Smith, R. Calandra, A. Romero, G. Gkioxari, D. Meger, J. Malik, and
M. Drozdzal, “3d shape reconstruction from vision and touch,” NeurIPS,
2020.

[3] E. Smith, D. Meger, L. Pineda, R. Calandra, J. Malik, A. Romero Sori-
ano, and M. Drozdzal, “Active 3d shape reconstruction from vision and
touch,” NeurIPS, 2021.

[4] S. Suresh, Z. Si, J. G. Mangelson, W. Yuan, and M. Kaess, “Shapemap
3-d: Efficient shape mapping through dense touch and vision,” in ICRA,
2022.

[5] O. Williams and A. Fitzgibbon, “Gaussian process implicit surfaces,” in
Gaussian Processes in Practice, 2006.

[6] R. Hamano, S. Saito, M. Nomura, and S. Shirakawa, “Cma-es with
margin: lower-bounding marginal probability for mixed-integer black-
box optimization,” in GECCO, 2022.

[7] M. Deisenroth and C. E. Rasmussen, “Pilco: A model-based and data-
efficient approach to policy search,” in ICML, 2011.

[8] P. Mitrano, A. LaGrassa, O. Kroemer, and D. Berenson, “Focused
adaptation of dynamics models for deformable object manipulation,” in
ICRA, 2023.

[9] C. Wang, Y. Zhang, X. Zhang, Z. Wu, X. Zhu, S. Jin, T. Tang, and
M. Tomizuka, “Offline-online learning of deformation model for cable
manipulation with graph neural networks,” RA-L, 2022.

[10] B. Van Niekerk, A. Damianou, and B. Rosman, “Online constrained
model-based reinforcement learning,” UAI, 2017.

[11] A. L. LaGrassa and O. Kroemer, “Learning model preconditions for
planning with multiple models,” in CoRL, 2022.

[12] S. Zhong, Z. Zhang, N. Fazeli, and D. Berenson, “Tampc: A controller
for escaping traps in novel environments,” RA-L, 2021.

[13] L. Manuelli and R. Tedrake, “Localizing external contact using propri-
oceptive sensors: The contact particle filter,” in IROS, 2016.

[14] S. Suresh, M. Bauza, K.-T. Yu, J. G. Mangelson, A. Rodriguez, and
M. Kaess, “Tactile slam: Real-time inference of shape and pose from
planar pushing,” in ICRA, 2021.

[15] B. Lee, C. Zhang, Z. Huang, and D. D. Lee, “Online continuous mapping
using gaussian process implicit surfaces,” in ICRA, 2019.

[16] G. Z. Gandler, C. H. Ek, M. Björkman, R. Stolkin, and Y. Bekiroglu,
“Object shape estimation and modeling, based on sparse gaussian
process implicit surfaces, combining visual data and tactile exploration,”
Robotics and Autonomous Systems.

[17] S. Caccamo, Y. Bekiroglu, C. H. Ek, and D. Kragic, “Active exploration
using gaussian random fields and gaussian process implicit surfaces,” in
IROS, 2016.

Peg-in-Hole Sim. Cable Real Cable
λ MPPI temperature .01 .167 .5
K MPPI samples 500 72 55
T MPPI horizon 10, 15, 20 8 12
Σ MPPI noise diag[.2×2] diag[.004×6] diag[.003×6]

α .590 .627 10
β .996 .995 .4
η 11.03 100 1000
C 15.88 10000 10000
dmin .01 .01 .0025
Tm 5 3 1
Te - 3 3
Tfit 3 2 2
rg .02 .04 .1
rc - .01 .01
TCMA 25 25 25
N 20 50 50

TABLE II
PARAMETERS

[18] L. Liu, S. Fryc, L. Wu, T. L. Vu, G. Paul, and T. Vidal-Calleja, “Active
and interactive mapping with dynamic gaussian process implicit surfaces
for mobile manipulators,” RA-L, 2021.

[19] S. Ottenhaus, D. Renninghoff, R. Grimm, F. Ferreira, and T. Asfour,
“Visuo-haptic grasping of unknown objects based on gaussian process
implicit surfaces and deep learning,” in Humanoids, 2019.

[20] S. Ottenhaus, M. Miller, D. Schiebener, N. Vahrenkamp, and T. Asfour,
“Local implicit surface estimation for haptic exploration,” in Humanoids,
2016.

[21] S. Dragiev, M. Toussaint, and M. Gienger, “Gaussian process implicit
surfaces for shape estimation and grasping,” in ICRA, 2011.

[22] L. Wu, K. M. B. Lee, C. Le Gentil, and T. Vidal-Calleja, “Log-gpis-
mop: A unified representation for mapping, odometry, and planning,”
IEEE Transactions on Robotics, 2023.

[23] T. Weng, D. Held, F. Meier, and M. Mukadam, “Neural grasp distance
fields for robot manipulation,” in ICRA, 2023.

[24] Y. Wi, A. Zeng, P. Florence, and N. Fazeli, “Virdo++: Real-world, visuo-
tactile dynamics and perception of deformable objects,” in CoRL, 2023.

[25] A. Simeonov, Y. Du, A. Tagliasacchi, J. B. Tenenbaum, A. Rodriguez,
P. Agrawal, and V. Sitzmann, “Neural descriptor fields: Se(3)-equivariant
object representations for manipulation,” in ICRA, 2022.

[26] M. Koptev, N. Figueroa, and A. Billard, “Neural joint space implicit
signed distance functions for reactive robot manipulator control,” RA-L,
2023.

[27] Y. Liu, H. Pottmann, and W. Wang, “Constrained 3d shape reconstruction
using a combination of surface fitting and registration,” Computer-Aided
Design, 2006.

[28] A. Karniel, Y. Belsky, and Y. Reich, “Decomposing the problem of con-
strained surface fitting in reverse engineering,” Computer-Aided Design,
2005.

[29] I. Kovács and T. Várady, “Constrained fitting with free-form curves and
surfaces,” Computer-Aided Design.

[30] A. Leeper, S. Chan, and K. Salisbury, “Point clouds can be represented as
implicit surfaces for constraint-based haptic rendering,” in ICRA, 2012.

[31] S. Liu, S. Saito, W. Chen, and H. Li, “Learning to infer implicit surfaces
without 3d supervision,” NeurIPS, 2019.

[32] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots,
and E. A. Theodorou, “Information theoretic mpc for model-based
reinforcement learning,” in ICRA, 2017.

[33] J. R. Gardner, G. Pleiss, D. Bindel, K. Q. Weinberger, and A. G. Wilson,
“Gpytorch: Blackbox matrix-matrix gaussian process inference with gpu
acceleration,” in NeurIPS, 2018.

[34] E. Coumans and Y. Bai, “Pybullet, a python module for physics
simulation for games, robotics and machine learning,” http://pybullet.org,
2016–2021.

[35] S. Allegretti, F. Bolelli, and C. Grana, “Optimized Block-Based Algo-
rithms to Label Connected Components on GPUs,” IEEE Transactions
on Parallel and Distributed Systems, 2019.

[36] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-
based control,” in IROS, 2012.

[37] Y. Wang, D. McConachie, and D. Berenson, “Tracking partially-occluded
deformable objects while enforcing geometric constraints,” in ICRA,
2021.

http://pybullet.org

	Introduction
	Related Work
	Problem Statement
	Method
	Dynamics-Informed Contact Data Generation
	Adding Generated Data to GPIS
	Local Minima of Controller
	Visual Pre-processing

	Visual Post-processing
	Contact Refinement
	Controller
	Goal Cost
	Action Regularization Cost
	Collision Cost
	Exploration Cost

	Results
	Constraint Optimization Implementation
	Peg-in-Hole
	Constraint
	Analysis

	Simulated Cable Manipulation
	Constraint
	Analysis

	Real Cable Manipulation
	Analysis

	Discussion and Conclusion
	Acknowledgments
	References

