
Tracking Deformable Objects with Normalized
Object Coordinate Spaces

Dylan Colli
Robotics Department
University of Michigan
Ann Arbor, Michigan

dfcolli@umich.edu

Yating Lin
Robotics Department
University of Michigan
Ann Arbor, Michigan

yatinlin@umich.edu

Abhinav Kumar
Robotics Department
University of Michigan
Ann Arbor, Michigan

abhin@umich.edu

Abstract—To accurately plan and execute tasks involving
robotic manipulation of an object, the manipulated object’s state
must be estimated throughout the task’s execution. Given the
initial pose and end effector forward kinematics, determining a
reasonable estimation of a manipulated rigid body is straightfor-
ward. State space estimation in tasks involving the manipulation
of deformable objects — such as folding laundry — suffers
from the very high dimensional state space that deformable
objects exhibit. To address this challenge, we propose a method
for tracking deformable objects using learned dynamics and
partial point cloud measurements to iteratively update a high
density initial point cloud, forming a filtering system. Our method
extends previous work in deformable object pose estimation to
handle partial, single view observations and to use previous
measurements as part of the prediction pipeline. We propose a
lightweight dynamics model that utilizes a pre-trained point cloud
feature extraction model as well as a measurement update step.
We generate trajectory data to train and evaluate the dynamics
model and show results comparing our method favorably to a
simple tracking baseline.

Index Terms—Tracking, Deformable objects

I. INTRODUCTION

To facilitate accurate planning and execution of task-level
manipulation, a reasonable estimate of the manipulated ob-
ject’s state must be obtained. For rigid objects, state estimates
can be trivially obtained given a known world-frame transla-
tion and rotation. This is due to the low dimensionality of the
rigid object’s state space and the relatively simple dynamics
when compared to deformable objects. Conversely, deformable
objects have very high dimensional state spaces and thus,
the state estimation of deformable objects poses a significant
challenge.

Tracking the pose of deformable objects through time is
paramount to enable continuous manipulation of those objects.
Real-time control tasks or planning tasks that require re-
planning will require tracking to provide state estimates at
different stages of execution. While methods exist to track
deformable objects [1], [2], these methods rely on inflexible
perception due to integration of heuristics into the tracking
algorithm. These methods rely on specific colors or trackable
markers placed on the tracked objects. On the other hand, there
exists methods that use deep learning to perceive objects with-
out these markers or hand-engineered heuristics [3]. However,
these methods are designed to perform pose detection at a

Fig. 1. Overlay of garment initial configuration (faded), final configura-
tion (full color), and gripper motion (red arrow) in a single action of a
simulated trajectory used to generate point clouds for training. Note the
slight deformation and self-occlusion of the garment’s collar induced by
gripper motion. Deformation-induced self-occlusion introduces challenges
for deformable object tracking methods that are not present in rigid object
methods.

single timestep, and thus do not integrate prior state estimates
to perform continuous tracking. We propose an extension to
[3] that enables continuous tracking of arbitrary deformable
objects within predefined classes.

Tracking deformable objects is challenging due to their
complex dynamics, leading to highly nonlinear evolution of
underlying states and visual observations. While the evolution
of images or point cloud data is non-linear for rigid objects
as well, reasoning about deformable objects greatly increases
the space of possible observations and further complicates
the evolution of measurements. However, with high-fidelity
simulators and deep learning methods that can learn from
large amounts of data, we now have techniques that can help
us reason about these complex systems. We present a method
that can be scaled to leverage large amounts of simulation data
to learn the evolution of pose estimates using limited online
views.

II. RELATED WORK

GarmentNets [3] is a perception method that enables pose
estimation of deformed cloth. It accepts a point cloud gener-
ated from fusing multi-angle views of an object and constructs
a pose estimate by mapping the point cloud to a Normalized
Object Coordinate Space [4], performing shape completion
in the canonical space, and estimating the deformation of
the object. The main issue preventing GarmentNets from
being used for tracking is the multi-angle view it uses for
generating pose estimates. While having views of the object
from multiple angles allows for more data collection and
better initial estimates, a method that can handle single-view
predictions for tracking would allow for easier deployment in
a real world setting.

Methods such as [1], [2] use statistical methods to track
deformable objects. Both methods use expectation maximiza-
tion techniques to calculate the most likely configuration of
points given point cloud measurements. Both methods also
assume certain models of the object that they use to structure
their estimates. In contrast, methods like GarmentNets do not
require these explicit models. We seek to strike a balance be-
tween GarmentNets’ high degree of expressivity and classical
methods’ higher degree of online data efficiency.

III. ALGORITHMIC EXTENSION

Our method uses an initial multi-angle point cloud and
propagates it forward in time using a dynamics model and
corrects the estimate with partial observations. We assume that
a full GarmentNets prediction can be made at initialization,
which requires views of the object from four angles. Generat-
ing four different views at initiailization is trivial and can be
done with a static camera by rotating the gripper grasping the
object. However, our method does not assume access to those
four angles during manipulation where rotating the object to
generate four views might be infeasible. Our method works
with a single view of the object during manipulation.

Our method has two main components: A dynamics model
that predicts the effects of an action on a multi-angle point
cloud estimate and a measurement update step that incorpo-
rates information from a single-angle point cloud measurement
to update the estimate.

The dynamics model that learns an approximation of single-
step point cloud dynamics does so using GarmentNets’ feature
extraction. We learn a function f(z, u) = ∆X , where X is a
point cloud, u is an action, and z represent features extracted
using the GarmentNets pipeline. We use the PointNet++ [5]
feature extractor that is learned as part of GarmentNets as it
is trained to reason about point clouds of cloths, allowing us
to learn dynamics from less data as we do not have to learn
features ourselves. We then input those features, along with an
action modeled as a change in gripper position, to a dynamics
model which predicts 3D deltas for the positions of each point
in the point cloud. Since PointNet++ aggregates information
from a neighborhood around each point in the point cloud, we
can treat the dynamics model as a pointwise prediction given
the pretrained PointNet++ features. We do not predict deltas

for the RGB portion of the point cloud in this work. The RGB
values are used as inputs to the PointNet++ feature extractor
and thus provide potentially useful downstream information,
e.g. on shadows induced by garment folds, to the dynamics
model. However, we assume they do not undergo a large
degree of change during manipulation. This assumption could
be relaxed in future work and a good model of the change
in the RGB values of the point cloud would be useful for
improving the dynamics learning.

The dynamics model is a multi-layer-perceptron with 2
hidden layers with size 512. The input is 131 dimensional,
corresponding to 128 dimensions for the PointNet++ features
and 3 dimensions for the action. We use ReLU activations and
optimize using AdamW [6]. This model has a relatively simple
structure that is justified by access to pretrained PointNet++
features.

The loss for this model is the chamfer distance between
the predicted point cloud, calculated by adding the predicted
position deltas to the input point cloud, and the actual four-
view measurement collected when generating the simulated
training data, shown in (1). X refers to the ground truth point
cloud and X̂ refers to the predicted point cloud. We down-
sample the initial four-view point cloud and the subsequent
ground truth measurements to 6000 samples before passing
the input through the model and calculating loss to allow for
more computationally efficient training. We use the chamfer
loss instead of a pointwise L2 loss since we do not have point-
to-point correspondences to calculate the L2 loss.

J(X, X̂) = .5(
1

|X|
∑
x∈X

min
x̂∈X̂

||x−x̂||22+
1

|X̂|

∑
x̂∈X̂

min
x∈X

||x−x̂||22)

(1)
Due to the high quality of the PointNet++ features learned

by GarmentNets, training the dynamics model does not require
a training time as long as the training time for GarmentNets.

As rolling out the dynamics multiple steps without any
sensor updates will result in predictions diverging from the
ground truth, we use partial view observations to update the
point cloud after computing a forward prediction. This partial
view observation can be thought of as viewing the object
from a fixed camera. We identify the closest point in the
full-view predicted point cloud estimate to each point in the
available partial view observation. This defines a partial cor-
respondence between the partial and full views. We optimize
a rigid translation between the observed partial view and the
corresponding partial view subset of the predicted full-view
point cloud to minimize the chamfer distance between these
two. The optimized translation distance can be used to correct
the predicted full-view point cloud. Then, we directly update
the values of the predicted full point cloud for which we have
a correspondence to the partial point cloud.

This allows us to directly update part of our estimate with
sensor measurements and still use the information from the
partial measurement to update the non-corresponding parts of
the full point cloud. The combination of applying the dynamics

Algorithm 1 GarmentNets Tracking with Partial-view Point
Clouds

function GARMENTNETS(X)
Xnocs = PointNet(X)
Xdf = UNet3D(Xnocs)
Vwnf = WNF(Xdf , S1)
Mwrf = IWF(Xdf , S2)
Mverts,Mfaces = MC(Vwnf)
return Mwrf , Mfaces

t = 0
X̂0 = X0

while Tracking do
V, F = GarmentNets(X̂t)
X̂t+1 = dynamics(X̂t, u) #update
X̂p,t = knn(X̂t+1, Xp,t)
dx = argmindx chamfer error(Xp,t, X̂p,t + dx)
X̂t+1 = X̂t+1 + dx #correction
X̂t+1 = direct correspondence update(X̂t+1, Xp,t)
t = t+ 1

and updating with the measurement can be thought of as
following a simple filter’s prediction and update steps.

The complete tracking algorithm is presented in Algorithm
1. We define the full-view point cloud measured at initializa-
tion as X0, the current partial-view point cloud measurement
as Xp,t, the full-view prediction as X̂t, and the full-view points
corresponding to Xp,t as X̂p,t. At initialization, we can collect
full-view point clouds, but in the subsequent tracking step we
are only able to observe a single viewpoint. Therefore, we
update the first step full-view point cloud to generate a full-
view prediction X̂t in the subsequent tracking step. Once we
have obtained the full-view prediction X̂t, we can then input
it into GarmentNets to generate the garment mesh.

In GarmentNets, the transformed point cloud in NOCS
Space is represented by Xnocs, and prediction dense point
cloud features are represented by Xdf . By performing grid
sampling on the dense point cloud features, GarmentNets can
use a learned winding number field (WNF) and the marching
cubes algorithm (MC) to predict the complete mesh in NOCS
space. Then, an output pose of the deformed cloth is predicted
using a learned Implicit Warp Field (IWF).

A. Dataset Generation

To generate training and evaluation data for the model,
we simulated the resting state and 5 trajectories of 25 T-
shirts. We utilized the Blender [7] (version 3.5) Python API to
simulate and render both the grasped state that GarmentNets
expects as well as the garment trajectories used for this model.
Cloth meshes, textures, and physics simulation parameters
were obtained via the CLOTH3D dataset [8]. The 25 T-
shirts selected for simulation in the training and evaluation
of this method were the same CLOTH3D meshes included
in the GarmentNets sample dataset available on the public
GitHub repository. We obtained the Blender simulation and
rendering routines that were used to simulate the grasped states

in the original GarmentNets publication and extended them to
include simulation of garment trajectories.

The dataset generation pipeline consists of three distinct
stages. The first stage involves the simulation of the garment
mesh deformation induced by gripper control. The second
stage consists of rendering the simulated meshes into 2D RGB
and depth images. The third and final stage is the extraction
of point clouds from the rendered simulation data.

1) Simulation of Garments: The first stage of the data
generation pipeline simulates the mesh deformation induced
by gripper control. This stage does not render the images that
are necessary for obtaining partial point clouds that are used
in training/evaluation. Instead, this stage simulates how the
structure of the garments deform given gripper motion. This
stage can be further broken down into two sub-stages, simu-
lation of the garment’s grasped resting state and simulation of
the garment motion induced by end effector control.

GarmentNets was trained on garments simulated using
meshes from the CLOTH3D dataset. The first sub-stage of
garment simulation mirrors exactly the simulation that was
done in the original GarmentNets publication. This involved
virtually ”grasping” a random vertex of the CLOTH3D gar-
ment mesh, then simulating the garment’s configuration after
it was picked up by the gripper and allowed to reach a stable
configuration.

The second sub-stage simulates garment deformation in-
duced by gripper control for five separate trajectories. Each
trajectory consists of three actions with randomly sampled unit
direction vector, n ∈ R3, and velocity, v ∈ [0.05, 0.20] m/s.

2) Rendering Of Simulated Data To 2D Images: Once
simulated meshes are obtained, the meshes can be rendered
to 2D images that one would expect to receive from a
typical RGBD sensor. Blender provides two separate rendering
engines for users, Cycles and Eevee. Cycles was built to
be a high accuracy, physically based render engine while
Eevee is built to optimize render speed. As the accuracy of
the depth information is paramount to obtaining high quality
point clouds, Cycles was used to render the depth images.
Conversely, highly accurate color data is less important to
algorithmic performance, so Eevee was used to render the
RGB images.

3) Point Cloud Extraction From Rendered Images: The
final stage of the data generation pipeline is the extraction
of point clouds from the rendered 2D RGBD images. As
the camera intrinsics and extrinsics are set by the user, point
clouds can be extracted from the 2D images in the typical
fashion.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

We evaluate our method on simulations of a manipulated
garment. These simulations were of a grasped cloth being
moved through freespace, with the motion inducing modest
garment deformation. We generate evaluation data using 2
different shirts with 5 random trajectories consisting of 75
time steps per shirt for a total of 10 evaluation trajectories or

Fig. 2. Chamfer error of point cloud predictions compared to ground truth
point clouds over time.

750 evaluation time steps. As a baseline, we consider a simple
transformation of the cloth’s pose calculated by applying the
transformation of the gripper to the initial cloth pose. This
amounts to a rigid transformation of the garment’s initial
configuration.

B. Results

We provide error results for four configurations of the
filtering system in Fig. 2. The error is quantified using the
Chamfer distance between the true four-view point cloud at
a given timestep, obtained via simulation, and the predicted
four-view point cloud. The error is averaged per timestep
over the 10 different evaluation trajectories, with the shaded
areas representing 1 standard deviation of the error. These
predictions are generated by rolling out single-step dynamics
recursively. These results show the utility of the matching
method as it clearly attenuates compounding error compared
with no matching. As the horizon increases, the error when
using the learned dynamics increases faster than the error when
using the rigid transformation. This behavior stems from two
distinct issues. First, the simulated actions are long enough
in duration that the cloth reaches a stable configuration mid-
action, causing the rigid deformation with matching to settle
to this stable configuration. Second, the model was trained
on limited data due to expensive simulation and rendering
routines. Though the rigid baseline with matching marginally
outperforms the tracking with learned dynamics a majority of
the time, the model still outperforms the rigid transformation
at certain points of the trajectory (see timesteps 20-40 of 2).

The timesteps with which the learned dynamics prediction
outperforms the rigid transformation baseline correspond to
the times with which the gripper finishes an action and transi-
tions to a different, randomly sampled action. This change in
gripper motion induces high impulse on the garment, causing

Fig. 3. Comparison of garment mesh tracking using rigid body dynamics
without observation matching and MLP dynamics with observation matching
at different timesteps. The learned method produces reasonable mesh esti-
mates. Note that the results of the initial timestep correspond to the results of
exact inputs that the original GarmentNets method expects (garment grasped
and allowed to reach a stable configuration).

deformation to ripple through the cloth. As these windows of
time exhibit garment deformation, the rigid baseline deviates
from true garment configuration. Impressively, the learned
model with matching is able to beat the rigid baseline with
matching even after error accumulation resulting from 20-40
single step dynamics predictions.

With the matching included, the difference between the
rigid transformation and the learned transformation shrinks.
With more training data and a better tuned model, it may
be possible to improve the results of the learned model
beyond the rigid transformation, especially if we consider
training and evaluation trajectories that induce further garment
deformation.

We also present qualitative results that show the Garment-
Nets predictions when given the predicted future point cloud
states in Fig. 3. We present the results from the rigid body
transformation without matching as well as the results from
using the learned dynamics with matching. These results show
reasonable mesh predictions, indicating that the dynamics
model does not force point clouds out of distribution of
GarmentNets.

V. CONCLUSION

We demonstrate a method that extends GarmentNets for
tracking of deformable objects using a filtering approach of dy-
namics updates followed by measurement updates from partial
point cloud views. The tracking outperforms a rigid baseline
and is able to track deformable objects with limited views
over time. Future work could include exploration of memory
in the tracking, for example using an RNN or transformer
model to better enable the model to access views from previous
timesteps in combination with the current timestep’s view data.

While our method does approximate the underlying dynam-
ics, one area of future work could be in ensuring topological
consistency of the updated point cloud. It is possible that the
model could predict a new point cloud that is topologically
infeasible given the true geometry of the object. By including
considerations for this possibility, longer-horizon predictions
could become more accurate. In addition, we expect that using
L2 loss with known correspondences for learning dynamics
would result in a higher quality dynamics model. Downsam-
pling future point clouds in a way that preserves pointwise
correspondenes with the current timestep’s point cloud would
be potential future work.

We believe this method could benefit from training on a
larger dataset and for a longer amount of time. Other possible
areas of exploration are more sophisticated ways of updating
the measurement with the partial view point cloud.

REFERENCES

[1] Y. Wang, D. McConachie, and D. Berenson, “Tracking partially-occluded
deformable objects while enforcing geometric constraints,” in 2021 IEEE
International Conference on Robotics and Automation (ICRA), 2021, pp.
14 199–14 205.

[2] J. Schulman, A. Lee, J. Ho, and P. Abbeel, “Tracking deformable objects
with point clouds,” in 2013 IEEE International Conference on Robotics
and Automation, 2013, pp. 1130–1137.

[3] C. Chi and S. Song, “Garmentnets: Category-level pose estimation for
garments via canonical space shape completion,” in The IEEE Interna-
tional Conference on Computer Vision (ICCV), 2021.

[4] H. Wang, S. Sridhar, J. Huang, J. Valentin, S. Song, and L. J. Guibas,
“Normalized object coordinate space for category-level 6d object pose
and size estimation,” in 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2019, pp. 2637–2646.

[5] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++:
Deep hierarchical feature learning on point sets in a metric
space,” CoRR, vol. abs/1706.02413, 2017. [Online]. Available:
http://arxiv.org/abs/1706.02413

[6] I. Loshchilov and F. Hutter, “Fixing weight decay regularization
in adam,” CoRR, vol. abs/1711.05101, 2017. [Online]. Available:
http://arxiv.org/abs/1711.05101

[7] B. O. Community, Blender - a 3D modelling and rendering package,
Blender Foundation, Stichting Blender Foundation, Amsterdam, 2023.
[Online]. Available: http://www.blender.org

[8] H. Bertiche, M. Madadi, and S. Escalera, “CLOTH3D: Clothed 3D
humans,” in Computer Vision – ECCV 2020. Springer International
Publishing, 2020, pp. 344–359.

